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Vaccines are recognized worldwide as one of the most important tools for combating infectious diseases. Despite the tremendous
value conferred by currently available vaccines toward public health, the implementation of additional vaccine platforms is also of
key importance. In fact, currently available vaccines possess shortcomings, such as inefficient triggering of a cell-mediated immune
response and the lack of protective mucosal immunity. In this regard, recent work has been focused on vaccine delivery systems, as
an alternative to injectable vaccines, to increase antigen stability and improve overall immunogenicity. In particular, novel strategies
based on edible or intradermal vaccine formulations have been demonstrated to trigger both a systemic and mucosal immune
response. These novel vaccination delivery systems offer several advantages over the injectable preparations including
self-administration, reduced cost, stability, and elimination of a cold chain. In this review, the latest findings and
accomplishments regarding edible and intradermal vaccines are described in the context of the system used for immunogen
expression, their molecular features and capacity to induce a protective systemic and mucosal response.

1. Introduction

One of the ten greatest public health achievements of the last
century was preventative vaccination [1]. Vaccines have
successfully reduced the spread of diseases and mitigated
mortality associated with infectious agents such as diphthe-
ria, tetanus, polio, measles, mumps, rubella, and hepatitis B
[2]. In spite of the many successes achieved by vaccines, novel
technologies and administration routes remain one of the
main focuses in the vaccinology field. Although many
licensed vaccines are administered by injection, in certain
cases, this administration route suffers from limitations. In
particular, injectable vaccines require trained personnel for
the administration of the vaccine and may require multiple
doses or inclusion of an adjuvant. Moreover, injectable
vaccines may require specialized storage and transport
conditions. From an immunological point of view, injectable

vaccines are capable of eliciting robust systemic humoral
responses while conferring weaker T cell-mediated immunity
and mucosal protection [3, 4]. Importantly, T cell effector
activity and mucosal immunity both contribute to preven-
tion and control of infection from pathogens targeting the
mucosa [5].

To improve on this limitation, alternative vaccine
delivery methods coupled with novel formulations and
production systems have recently been proposed. Numer-
ous studies have focused on vaccines delivered to the
mucosal interface or intradermally, demonstrating rapid
and wide biodistribution of the antigen and the capacity
to induce both protective mucosal (mainly mediated by
secretory IgA [SIgA]) and systemic cellular and humoral
responses [6–8].

In this review, we discuss current advances and
advantages of edible systems based on plants, algae, yeast,
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insect cells, and lactic acid bacteria and of the intradermal
immunization route.

1.1. The Mucosal Delivery and the Immune Response. The
efficacy of the mucosal administration route is largely based
on the fact that mucous membranes constitute the largest
immunologic organ in the body. Moreover, this interface is
endowed with well-organized lymphatic structures, termed
mucosa-associated lymphoid tissue (MALT), containing
both the innate and adaptive (T and B cells) arms of the
immune system [9]. Furthermore, antigen-specific SIgA
plays a pivotal role in protecting mucosal surfaces from both
microbe adhesion and toxin activities [8]. Thus, the develop-
ment of novel vaccine delivery platforms implementing the
elicitation of pathogen- or toxin-specific SIgA, as well as
systemic IgG, is pivotal to improve vaccine effectiveness [10].

To date, the most well-studied vaccine delivery platforms
capable of eliciting both mucosal and systemic immunities
are edible or intradermal vaccine formulations (Figure 1).
Oral vaccines stimulate the generation of immunity in

gut-associated lymphoid tissue (GALT), which includes
lymph nodes, Peyer’s patches (in which lymphocytes are
the major component: ~75% are B cells, while ~20% are T
cells), and isolated lymphoid follicles in the gastrointestinal
tract (GIT). An effective immunization using oral vaccines
is achieved when sufficient quantities of antigen are trans-
ported across the mucosal barrier by M cells into Peyer’s
patches and subsequently presented to T cells by antigen-
presenting cells (APCs) [11]. Briefly, professional APCs
display peptide fragments of the antigen in the context of
the major histocompatibility complex (MHC) on their sur-
face, which leads to activation of CD4+ T cells [12]. Subse-
quently, activated CD4+ T cells support germinal center
development, including B cell affinity maturation and class
switching to IgA, through providing CD40/CD40 ligand
interactions and cytokine secretion [13–15]. Moreover,
through the expression of specific chemokine homing recep-
tors (e.g., CXCR5 or CCR10), antigen-experienced B cells
migrate to distant effector regions where they differentiate
into plasma cells capable of secreting dimeric or polymeric
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Figure 1: Alternative methods of vaccine delivery. Development of rationally designed vaccines starts with the identification of the gene
encoding for the protective antigenic protein(s). Subsequently, the antigen(s) can be incorporated into different edible systems, as plants,
algae, insects, or yeasts, or used for intradermal formulations to induce a mucosal protective response. Following the administration of the
edible vaccine and the subsequent passage of the antigen(s) through the M cell compartment delivering it to dendritic cells, the
individual’s immune system triggers a response leading also to specific IgA production and secretion. Similarly, patches with coated
microprojections or biodegradable needles activate Langerhans cells and dermal dendritic cells in the skin dermis. These cells capture and
present the antigen(s) to T and B lymphocytes, triggering both a mucosal and a systemic immunity.
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IgA molecules that are transported into the intestinal lumen
as SIgA [10, 16].

In the context of edible vaccines aimed at eliciting
pathogen-specific responses, it will be necessary to overcome
mucosal tolerance. Briefly, mucosal tolerance is achieved
against certain foreign antigens, such as those contained in
our food, and serves to prevent unnecessary and potentially
detrimental immune responses in the gut mucosa. Due to
this phenomenon, an erroneous mucosal vaccine formula-
tion could induce a Treg-based tolerogenic response instead
of Th17-mediated protective immunity [17]. This potential
shortcoming can be circumvented using several strategies,
including incorporation of an appropriate adjuvant in the
vaccine formulation or using sufficiently high doses of anti-
gen to promote induction of effector rather than regulatory
cells [5, 11]. Moreover, in the context of edible-based vaccine
immunizations, it will also be important to consider the
characteristics of the GIT, in which several factors, including
proteolytic enzymes, acidic pH, bile salts, and limited perme-
ability, may hinder the induction of a protective immune
response [10]. To this end, conjugation of the vaccine antigen
with specific ligands that enhance their uptake by M cells
represents a focus of ongoing studies aimed at improving
immunogenicity [18]. Moreover, antigen bioencapsulation
avoids degradation and conformational alterations [19].

1.2. Overview of Edible Vaccines. In the following sections, we
review the various strategies underlying the development of
edible vaccines. In particular, we focused on plant, algae,
insect cells, whole yeast, and lactic acid bacteria-based
vaccines and describe the advantages and limitations of
individual systems.

1.3. Plant-Based Vaccines. Plants have been extensively
used for developing novel biopharmaceutical-producing
platforms in recent years, as they promote proper folding
of exogenous proteins and are economically sustainable
[20, 21]. This is also known in the context of “molecular
farming,” in which biomolecules of commercial value are
produced in genetically engineered plants. There are several
ongoing clinical trials using purified antigens transiently pro-
duced in tobacco plants (Nicotiana benthamiana) for inject-
able vaccine formulations. For example, Medicago recently
completed a phase II clinical trial using a plant-derived,
virus-like particle (VLP) quadrivalent influenza vaccine and
announced a phase III clinical study in the last year (Clinical-
Trials.gov identifier: NCT03301051) [22].

Owing to the fact that plants are edible, the notion that
they could serve as a delivery vehicle, as well as biofactories,
led to their use for oral vaccination in the early 1990s [23].
In recent years, additional studies have sought to overcome
the limitations of conventional vaccines through develop-
ment of edible formulations [24, 25]. Since the inception of
the idea, it has been evident that using plants to produce
vaccines would have several advantages. First, plant vaccines
would likely have a low production cost and could be easily
scaled-up, as has been demonstrated by the biopharmaceuti-
cal industry. Molecular farming gained visibility thanks to
the success of ZMapp, the experimental drug against the

Ebola virus that was produced inNicotiana plants [26]. How-
ever, unlike biomolecule production, edible vaccine formula-
tions do not need processing or purification steps before
administration, which serves to further lower production-
associated costs. Indeed, another advantage of this strategy
is that plant cells would provide antigen protection due to
their rigid cell wall. This is also known as the bioencapsula-
tion effect and could increase bioavailability of antigenic mol-
ecules to the GALTs through preserving structural integrity
of vaccine components through the stomach to elicit both a
mucosal and a systemic immune response. Additional strate-
gies for antigen protection can be achieved through targeting
biomolecule expression inside chloroplasts or other storage
organelles [27] or in the protein bodies of seeds [28, 29]. This
technology also offers advantages in terms of storage and
cold chain-free delivery due to the high stability of the
expressed antigens bioencapsulated within the plant and seed
tissues. Moreover, plant materials can be stored at elevated
temperatures for longer periods and grown where needed,
making this strategy even more attractive for developing
countries [30]. Finally, plant-based oral vaccines are char-
acterized by improved safety relative to traditional recom-
binant vaccine platforms, especially since contamination
from mammalian-specific pathogens can be eliminated [30].
Indeed, some studies using lyophilized leaves have shown
their advantages over fresh materials such as long-term sta-
bility, higher antigen content, and lower microbial contami-
nation. As an example, freeze-dried CTB-EX4-expressing
(CTB: cholera toxin B subunit; EX4: exendin-4) leaves were
shown to be stable for up to 10 months at room temperature,
and lettuces expressing soluble antigen (PA; protective
antigen from Bacillus anthracis) were successfully stored for
up to 15 months at room temperature without showing anti-
gen degradation [31]. The antigen content in lyophilized leaf
materials was also 24-fold higher than fresh leaves. An
additional benefit of lyophilization was its ability to remove
microbial contamination. While lyophilized lettuce had no
detectable microbes, fresh leaves contained up to approxi-
mately 6000 cfu/g microbes when plated on various growing
media [31].

To date, vaccine antigens have been transformed into
many edible species including lettuce, tomato, potato,
papaya, carrot, quinoa, and tobacco [32]. Their proper fold-
ing and enhanced expression have also been tested in animal
models, proving the immunogenicity of antigens produced in
these systems [24, 33].

To obtain high quantities of the protein of interest, both
nuclear and chloroplast genomes have been successfully
engineered. However, the latter option is preferred owing to
some advantages including high levels of transgene expres-
sion (up to 70% of total soluble proteins (TSP)) [34, 35],
bioencapsulation effect, and regulatory concerns since trans-
gene containment is assured by the fact that plastids are not
spread via pollen in most plants. Moreover, incorporation
of vaccine antigens into the chloroplast genome would also
enable the expression of multiple genes in a single operon,
which would be very attractive for multivalent vaccine devel-
opment. Likewise, this approach may enable the production
of vaccines conferring protection against multiple infectious
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agents and would serve to further reduce costs associated
with vaccine production and administration [36].

Unfortunately, there are some disadvantages undermin-
ing their applications. First, plastids are not suitable for
production of antigens that require glycosylation for proper
folding or those antigens in which a protective immune
response requires glycan recognition. However, nuclear
transformation represents a valid option. Secondly, antigen
expression can be either transient or stable in plants, but
the second is preferred in order to obtain a stable genetic
resource. In fact, transgenic seeds represent a constant
resource to grow the transgenic plants and to extract pro-
teins. However, stable transformation is time-consuming
[25]. Moreover, expression in stable transformed crop plants
suffers from low yields, typically less than 1% of TSP [36].
On the other hand, transient expression technology using
either Agrobacterium or viral vectors is robust, quick,
and easy to manipulate [37]. However, this expression is
typically unstable [30]. Another important challenge of
plant-based oral vaccines is the lack of a proper dosing
strategy because low doses may not be able to induce a
sufficient immune response and high doses, as previously
described, may lead to immune tolerance. To this end,
freeze-drying methods were implemented to stabilize plant
biomass, concentrate the antigen, and achieve an accurate
dosage by quantifying the antigen in terms of dry biomass
weight, as mentioned above [31, 38].

To date, there are some plant-based vaccines for the
hepatitis B virus (HBV), rabies virus, Norwalk virus, entero-
toxigenic E. coli, and Vibrio cholerae in phase 1 clinical trials
(Table 1). Many others are still in preclinical development,
including vaccines targeting a variety of pathogens such as
avian influenza viruses (HPAI H5N1) [39], Helicobacter
pylori [40], and coronaviruses [41].

1.4. Algae-Based Vaccines. Green microalgae, such as Chla-
mydomonas reinhardtii, represent another viable option for
vaccine production. However, some disadvantages of plant-
derived vaccines, such as low expression levels and improper
glycosylation of antigen proteins, have been described [52].
Thus far, only chloroplast transformation is possible [52],

and only a single organelle is present, even if it occupies half
of the cell volume [53].

Stable transformed lines of green algae are easy to obtain
and can lead to increased yield of expressed antigens. In fact,
unicellular green algae have all the positive characteristics of
plant systems, plus unique advantages over terrestrial plants.
Biomass accumulation is extremely fast and can be used in its
entirety. Their growth neither has seasonal constraints nor
relies on soil fertility. Cross-contamination of nearby crops
cannot occur, as algae can be cultured with enclosed bioreac-
tors [54]. Furthermore, in regard to regulatory aspects, green
algae, such as C. reinhardtii, are generally recognized as safe
(GRAS) by the FDA. Finally, algae can be easily lyophilized
and, when dried, can be stored at room temperature for up
to 20 months without losing antigenic efficacy [55]. In fact,
the algae cell wall assures the bioencapsulation effect, as it
was proven to prevent antigen degradation by enzymes of
the GIT [55].

Collectively, these characteristics indicate that algae
would be an ideal host for vaccine transport without a cold
chain supply. Thus, as already described for plant-derived
edible vaccines, the low cost and simpler logistic in terms of
manufacturing, storage, delivery, and administration of the
algae-based technology make it an ideal system in the con-
text of resource-limited settings compared to conventional
vaccine formulations.

There are no algae-based vaccines currently in clinical
trials; however, preclinical formulations against human pap-
illomavirus (HPV), HBV, and foot-and-mouth disease virus
(FMDV) are under development [32, 52, 56] to overcome
some technical problems, such as a low expression level
from the nuclear genome and lack of glycosylation following
chloroplast expression [52].

1.5. Insect Cell-Based Vaccines. Insect cell systems have been
widely adopted because of their capacity to produce high
levels of proteins and to perform cotranslational and
posttranslational modifications, including glycosylation,
phosphorylation, and protein processing. This expression
platform allows for generation of stable transformed cell lines
or transient expression driven by recombinant baculovirus

Table 1: Status of development of plant-based vaccines.

Pathogen Antigen Plant host
Expression
system

Indication
Route of

administration
Clinical trial

status
Clinical trial ID Refs

Enterotoxigenic
E. coli

LT-B Potato Transgenic Diarrhea Edible Early phase 1 ▶ [42]

Enterotoxigenic
E. coli

LT-B Maize Transgenic Diarrhea Edible Early phase 1 ▶ [43]

Norwalk virus CP Potato Transgenic Diarrhea Edible Early phase 1 ▶ [44]

Rabies virus
GP/NP
(fusion)

Spinach
Viral vector
(transient)

Rabies Edible Early phase 1 ▶ [45]

HBV HBsAg Lettuce Transgenic Hepatitis B Edible Early phase 1 ▶ [46]

HBV HBsAg Potato Transgenic Hepatitis B Edible Phase 1 NCT01292421 [47]

Vibrio cholerae CTB Rice Transgenic Cholera Edible Phase 1 UMIN000009688 [48–51]

HBsAg: hepatitis B surface antigen; CP: capsid protein; GP: glycoprotein; NP: nucleoprotein; CTB: cholera toxin subunit B. ▶: restricted cohort study design.
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infection. The baculovirus-insect cell expression system,
referred to as BEVS, is one of the most well-known and used
systems for large-scale production of complex proteins and,
most recently, for the development of subunit vaccines [57].
To date, there are three commercially available vaccines pro-
duced in insect cells for different indications: Cervarix (GSK)
for cervical cancer, Flublok (Protein Sciences, now owned by
Sanofi Pasteur) for influenza, and PROVENGE (Dendreon)
for prostate cancer [58].

Importantly, the baculovirus expression system is not
limited only to cultured cells. Insect larvae or pupae can be
used for protein production. In the context of edible vaccines
using insect larvae or pupae, silkworm Bombyx mori larvae
or pupae have been commercially used for the production
of recombinant proteins and also as a feasible delivery
system for the vaccine [59, 60]. As mentioned above, the
baculovirus-silkworm expression system is able to perform
cotranslational and posttranslational modifications and also
able to produce large amount and multiple proteins. More-
over, since baculovirus is unable to replicate in vertebral
animals, it can be considered a GRAS. Furthermore, the
presence of protease inhibitors and biocapsule-like fat in
the silkworms may protect recombinant proteins from
enzymatic digestion in the GIT [23, 61].

Several vaccine prototypes are currently under evalua-
tion, and strong systemic immune protective responses
support the use of silkworm as a mucosal vaccine vector, as
shown, for example, by high immunogenicity in mice of the
urease B subunit ofHelicobacter pylori produced in silkworm
[60, 62]. While the data collected so far support the possible
use of baculovirus-silkworm vaccines as a promising edible
vaccine platform, it is only approved for food ingestion in a
few Asian countries.

1.6. Whole-Cell Yeast-Based Vaccines. The industrial usage of
yeasts cells for production of heterologous proteins has been
well described [63, 64]. Additionally, the capability of this
system to perform posttranslational modifications, the GRAS
status, and the cellular wall that could protect the antigen
across the GIT make engineered yeasts an attractive vaccine
delivery system [23, 65]. In addition, the major drawback of
this system is hyperglycosylation of recombinant proteins,
but it has been already addressed by generating defective
N-glycosylation strains of yeasts [66, 67].

Whole-cell yeast-based vaccines have been studied for
their ability to elicit an immune response. Remarkably, some
preclinical studies based on orally administrated Saccharo-
myces cerevisiae and developed for different infectious agents,
such as HPV and Actinobacillus pleuropneumoniae, showed

that this delivery system is able to induce a protective
mucosal and a systemic immune response [68–70].

Moreover, the increased immunogenicity of this deliv-
ery system could be explained by the adjuvant activity of
β-glucans on the yeast cell wall, which demonstrates immu-
nomodulatory and adjuvant effects through binding of innate
pathogen receptors on macrophages, DC, and neutrophils
[71]. Currently, two clinical trials have been developed:
GS-4774 for HBV treatment and GI-5005 for hepatitis C
virus (HCV) treatment (Table 2). Regarding the clinical trial
for GS-4774, despite the positive results obtained from phase
1 [72], the second phase, conducted in virally suppressed,
noncirrhotic patients with chronic HBV infection did not
show a clinical benefit. However, other safety and efficacy
studies have been conducted on another group of patients
(in particular, in treatment-naïve patients with chronic
HBV) [73]. Regarding the clinical trial for GI-5005, phases
I and II reported promising results [74]. In particular, in
this trial, GI-5005 was used also in combination with
Peg-IFN/ribavirin. However, data on efficacy have not been
published yet.

1.7. Lactic Acid Bacteria-Based Vaccines. Lactic acid bacteria
(LAB) are Gram-positive, nonsporulating, and nonpatho-
genic bacteria that have been used for decades for the pro-
duction and preservation of food as well as for therapeutic
heterologous gene expression, like the production of different
anti-human immunodeficiency virus (anti-HIV) antibodies
(scFV-m9, dAb-m36, and dAb-m36.4) by Lactobacillus jen-
senii and the production and functional expression of the
antilisterial bacteriocin EntA in L. casei [75–77]. Given these
and the ability of LAB to elicit a specific immune response
against recombinant foreign antigens, these bacteria have
been considered potential candidates as mucosal vaccine
vectors. This delivery system can confer protection against
antigen degradation and, thanks to its uptake at the GIT
level, can activate both innate and adaptive immune
responses [78, 79].

Many LAB, in particular, Lactobacillus spp and Bacillus
subtilis, were used in preclinical studies against different
infectious diseases. Different results have been obtained from
these studies, but an elicited immune response was observed
in all of them. As an example, the production of high levels of
specific IgA and systemic IgG after immunization with bacil-
lus spores expressing toxin A peptide repeat was reported
[80], while in another paper, L. lactis expressing HEV antigen
ORF2 vaccine was tested and a specific Th2-based cell-
mediated immune response was revealed as well as the
production of specific mucosal IgA and serum IgG [81].

Table 2: Status of development of whole yeast-based vaccines.

Pathogen Antigen Yeast host Expression system Indication Clinical trial status Clinical trial ID Refs

HBV HBV (X/S/core) Saccharomyces cerevisiae Stable Chronic HBV Phase 2
NCT01943799

[73]
NCT02174276

HCV HCV (NS3/core) Saccharomyces cerevisiae Stable Chronic HCV Phase 2 NCT00606086 [74]

X: hepatitis B regulatory protein; S: hepatitis B surface antigen; NS3: hepatitis C nonstructural protein.
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Another study reported a Th1/Th2 immune response elicited
after the immunization with Csenolase-expressing Bacillus
subtilis [82]. Another example is the oral administration of
B. subtilis spores expressing urease B of Helicobacter pylori
that provide protection against Helicobacter infection [83].

An important feature of LAB is their natural adjuvan-
ticity and their immunomodulatory effects, although the
molecular mechanism of these capabilities is not completely
understood [84]. Moreover, other studies reported an effect
on dendritic cell maturation and an induction of cytokine
secretion [85, 86]. Despite the promising characteristics of
recombinant LAB as mucosal vaccine vectors and given the
encouraging results from murine studies, some aspects need
to be taken into consideration, namely, the fact that vaccine
strains cannot be considered avirulent, even if it could be
listed as GRAS, due to potential transfer of antibiotic selec-
tion markers among microbes [78, 87]. Furthermore, other
factors are important for the development of LAB-based
vaccines. As an example, the necessity of a suitable delivery
system since different administration routes produce differ-
ent immune effects. Additionally, the role of specific adju-
vants and the correct localization (intracellularly or on the
bacterial surface) of each expressed antigen need consider-
ation [88]. Overall, additional studies and clinical trials
are needed for the development of efficient vaccines based
on LAB.

A different carrier system based on nonrecombinant
Lactococcus lactis bacteria was recently developed. This
system, called Gram-positive enhancer matrix (GEM), is
composed of the rigid peptidoglycan (PGN) cell wall of the
bacterium resulting in a nonliving particle that preserves
the shape and the size as the original bacterium [89]. GEMs
are used in two different ways: mixed with vaccine antigens
as adjuvants or as antigen protein carriers, with the antigens
bound to the surface of GEMs.

Regarding the use of GEMs as adjuvants, because of
their nature, GEMs are safer adjuvants compared to
others. Moreover, they retain the inflammatory properties
of live bacteria and enhanced specific mucosal and systemic
immune responses of the influenza subunit vaccine [90–92].
Therefore, the use of GEMs was further examined in a study
investigating the immune response elicited by intranasal
delivery of the influenza subunit vaccine coadministrated
with GEM (FluGEM). In detail, an influenza-specific mem-
ory B cell response and the presence of long-lived antibody-
secreting plasma cells were reported. Additionally, this
immune response was able to confer protection from influ-
enza infections [91]. These important results obtained in
murine studies have led to a phase I clinical trial which
confirmed the positive preclinical data. Systemic hemaggluti-
nation inhibition (HAI) titers and local SIgA responses were
reported. Further studies will assess if this immune response
confers protection against the influenza virus [93].

GEMs have also been used as antigen protein carriers. In
particular, antigens are bound to GEM through the presence
of a PGN-binding tag (Protan) in the antigen. Several works
used this vaccination strategy, and the data support the
potential of GEMs as safe vaccine delivery vehicles and their
ability to elicit systemic antibodies [94–97]. Moreover, GEMs

are also able to present several antigens at the same time
which could be helpful for the preparation of multivalent
vaccines [98]. Furthermore, the delivery of an adjuvant
(GEMs) and an antigen together has been correlated with
enhanced vaccine immunogenicity [97]. Lastly, as opposed
to a vaccine based on LAB, the absence of recombinant
DNA avoids its dissemination into the environment. How-
ever, the inability of GEMs to colonize any compartment
does not allow the reduction of the number of vaccine doses.

These promising premises allowed the development of a
vaccine against respiratory syncytial virus (RSV). In particu-
lar, an intranasal formulation based on the trimeric RSV
fusion protein coupled with GEMs and named SynGEM
was developed. Also, in this case, positive results from studies
in mice and rats have been obtained, and as for FluGEM, vac-
cination with SynGEM resulted in the induction of a robust
systemic and mucosal immune response as well as a balanced
cytokine profile. These data supported further study of this
vaccine in phase I clinical trial, which is currently ongoing
[97]. In conclusion, GEMs represent an interesting vaccina-
tion strategy either as adjuvant or as antigen protein carriers,
but as in the case of vaccine based on LAB, further studies
are needed.

1.8. The Intradermal Vaccine Delivery and Its Associated
Immune Response. Another vaccine delivery route capable
of triggering both systemic and mucosal immunities is the
intradermal route, in which the antigen is delivered through
the skin using recently developed self-administrable devices.
In particular, the application of microneedle technology
overcomes the skin permeation barrier imposed by the
stratum corneum and facilitates antigen delivery. The efficacy
of this new microneedle-based immunization approach is
due to the presence of several types of immune cells (such
as DCs, T lymphocytes, NK cells, macrophages, and mast
cells) in the epithelium [99, 100]. In fact, the cells that are
responsible for triggering the inflammation cascade in the
skin are the Langerhans cells (comprising 2-4% of epithelial
cells). Langerhans cells are a specific DC subset that migrates
into the lymph node following antigen capture and aids in
the initiation of an adaptive immune response [101]. These
cells are also efficiently stimulated by pathogen-associated
molecular patterns (PAMPs) using an array of germline-
encoded pattern recognition receptors (PRR), including
toll-like receptors (TLR) and langerin (CD207) [100]. Impor-
tantly, skin resident mast cells are also key drivers of the
innate immune response in the skin through the release of
granules containing inflammatory mediators [102].

1.9. Intradermal Vaccination. Using conventional syringes
for intramuscular or subcutaneous vaccinations, large vol-
umes of vaccine solution can be injected (≥1mL). Thus, the
choice of the muscle or hypodermis as vaccination targets is
mainly based on convenience [99]. Intradermal immuniza-
tion for vaccine delivery is an upcoming strategy showing
significant advantages over conventional vaccination routes.
In particular, in the last few years, intradermal vaccination
has gained momentum as an alternative and more effective
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vaccine delivery route, both from a scientific and a commer-
cial point of view (Table 3).

Intradermal vaccination designates the delivery of an
antigen directly into the dermis with a syringe, a needle, a
microneedle, or a pressure injector. The standard intrader-
mal immunization technique was invented by the French
physician Charles Mantoux in 1910, while he was developing
the tuberculin test. This technique allows the injection of
100-200μL of vaccine solution. However, Mantoux’s tech-
nique requires skilled medical personnel to be performed
[103]. Recent advancements have led to the development of
techniques and instruments that can overcome the difficul-
ties associated with intradermal administration [104]. In
fact, different devices have been developed over the years
for intradermal vaccination. Among them, solid micronee-
dles, particle injectors, and self-administrable patches with
coated microprojections or biodegradable needles have
been described [105]. As previously mentioned, intradermal
vaccination can induce mucosal and systemic immunities.
These immunological capabilities, coupled with its ease of
access, make the intradermal route an attractive vaccination
delivery target [106].

Intradermal vaccination has been demonstrated to be
very safe. In fact, novel devices involve the use of needles with
a smaller size than the usual (25μm and 1mm) and make it
possible to bypass the corneous layer of epidermis by creating
transient micropores in the cutaneous tissues. Even if some
studies have shown that intradermal vaccination can be
associated with a higher incidence of local reactogenicity,
including primarily mild pain, swelling, and redness, sys-
temic side effects have not been reported. In fact, the intra-
dermal route limits the transfer of vaccine components to
the blood circulation (and the risk of septic shock) and the
possible toxicity due to hepatic first-pass effect [107]. Typi-
cally, when present, local effects resolve quickly, as reported
in a study comparing the safety and immunogenicity of a
large number of intradermal versus intramuscular influenza
vaccines [108].

Another important aspect is the possibility of improving
the immunogenicity of various vaccines in immunocompro-
mised hosts as well as during pregnancy via the intradermal
route [109, 110]. As an example, it has been reported that
the HBV vaccine fails to yield seroconversion in 3-5% of
recipients. However, a significant improvement was observed
following intradermal vaccination [111]. Additionally, it
has been demonstrated that in patients on dialysis or in

HIV-positive subjects, the intradermal route was more
immunogenic than the standard intramuscular route [112].

From a commercial point of view, intradermal vaccina-
tion has been primarily explored for its ability to elicit equiv-
alent antibody responses at lower doses, a phenomenon
typically described as “dose sparing” [113]. In this regard,
the advantage of a low dose is most evident in high-surge
situations, such as during pandemic and seasonal influenza
waves, in which large populations are at an increased risk
and large amounts of new antigen preparations are quickly
required each year [114–116]. Above all, dose sparing is also
important in a large-scale setting and in reducing the
production-associated costs, especially in developing coun-
tries, where the price of the vaccine limits its use and cover-
age. In this regard, the U.S. Food and Drug Administration
(FDA) approved the trivalent inactivated intradermal influ-
enza vaccine for use in adults 18-64 years of age for use
during the 2012-2013 season, and a quadrivalent formulation
was subsequently approved in 2014. However, similar to
intramuscular vaccines, the formulation of these approved
intradermal vaccines is liquid and thus still dependent on
the cold chain and administered through a syringe. For these
reasons, novel dried solid microneedle devices, while eliciting
comparable immunogenicity to intramuscular-administered
vaccines, represent an innovative approach to facilitate
self-administration and allow vaccine storage at room
temperature [117].

2. Conclusions

Infectious diseases represent a global concern, and the most
effective strategy to reduce them is vaccination. Unfortu-
nately, not every disease can currently be prevented
through vaccines. However, many strategies have been
developed against infectious agents, such as the generation
of neutralizing antibodies, antibiotics, and antiviral drugs
[124–130], and innovative approaches are currently under
development [131–133].

Many vaccines have been developed and approved
against various pathogens, and countless studies have been
conducted to improve their efficacy by testing new adjuvants
and performing the rational identification of the antigen
formulations and pathogen contaminations [134–136].
Promising results have been also achieved by changing the
delivery strategy. In fact, most of the approved vaccines are
administrated by injection with intrinsic limitations like

Table 3: Status of development of some intradermal vaccines.

Pathogen Formulation/antigen Indication Clinical trial status Clinical trial ID Refs

Influenza virus Split virus Influenzas A and B Approved
NCT01712984, NCT02563093,
NCT02258334, NCT01946438

[118]

Enterotoxigenic E. coli dmLT∗ Gastroenteritis Phase 1 NCT02531685 [119]

HBV HBsAg Hepatitis B Phase 1 NCT02186977 [120]

Dengue virus Attenuated virus Dengue fever Phase 1 NCT01765426 [121]

Poliovirus Inactivated virus Poliomyelitis Phase 3 NCT03239496 [122]

HIV-1 HIV-1 DNA AIDS Phase 2a PACTR2010050002122368 [123]
∗dmLT: double mutant heat-labile enterotoxin.
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those concerning the immunological aspect. Injected vac-
cines are able to elicit a strong humoral immunity but a
weak cellular response. In addition, this type of administra-
tion is strongly associated with a systemic immunity but
with a lack of mucosal response, which is helpful to block
the early stages of infection since most pathogens infect
through the mucosal membranes.

For these reasons, new vaccination strategies have been
proposed. In particular, edible vaccines, triggering the GALT,
and intradermal approaches, involving Langerhans cells,
are able to elicit both a mucosal and a systemic immune
response. The increased knowledge of these approaches
has led to the progression of many preclinical studies and
several promising clinical trials (Tables 1, 2, and 3). More-
over, these vaccine strategies are considered safe and
cost-effective as no extensive antigen processing is needed
[137, 138] and they are easy to administrate (Table 4). In fact,
due to the opportunity of self-administration and ease of dis-
tribution compared to an injection-based approach, these
two vaccination systems could improve the overall coverage.

There remain a number of obstacles and drawbacks asso-
ciated with each antigen delivery platform that still need to be
addressed (Table 4). Presently there are no FDA-approved
compounds for edible vaccination, but new emerging
technologies like nanoparticles (NPs) could help to control
antigen bioavailability to avoid mucosal tolerance. NPs are
particles with a mean size of 10-100 nm (up to 2000 nm),
which can be used as carriers and/or adjuvants in vaccine
preparation [139–141]. Moreover, NPs can be targeted to
specific cell populations. As an example, NPs can be coated
with antibodies recognizing a surface protein on dendritic
cells [142, 143]. This approach enabled a more accurate
measurement of the quantity of antigen required to elicit an

immune response [144]. Finally, a more efficient immuniza-
tion was demonstrated using NP-based approaches com-
bined with an intradermal vaccine delivery [145], while oral
delivery needed further investigations as they have been
tested only in vitro [146, 147].

In conclusion, novel approaches eliciting a stronger
mucosal response are showing promising results both in
preclinical and clinical studies. Further studies are needed
to implement and improve these delivery systems; however,
mucosal delivery is becoming the most preferred mode
of vaccination.
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